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PpT Data for Hydrogen Sulfide + Propane from (263 to 363) K at Pressures up to

40 M Pa

Carmen Jarne,™® Fabien Rivollet,* and Dominique Richon*-"

MINES ParisTech, CEP/TEP - Centre Energétique et Procédés, Rue Saint Honoré, 77305 Fontainebleau, France, and
Processium, CEI3, 62 bvd Niels Bohr, 69603 Villeurbanne Cedex, Lyon, France

Pressure, density, and temperature (PpT) data are presented for two compositions (z = 0.2227 and 0.2691)
of the hydrogen sulfide (1) + propane (2) binary mixture at three temperatures in vapor and liquid states
from a vacuum up to 40 MPa. Experimental work was achieved thanks to a vibrating-tube densimeter using
the forced path mechanical calibration model (FPMC). The Lee—Kesler—Plocker model was chosen with
one temperature-dependent binary interaction parameter to represent our experimental data. Observed
deviations on liquid and vapor densities (between experimental and calculated data) are less than 2 % on
both liquid and vapor phases except for data close to the critical point.

Introduction

This work is continuing part of several studies dealing with
gas impurities (CO, and H,S) into light hydrocarbons.* 3
Experimental data are of great importance to develop a reliable
model used for process engineering. Literature provides very
few density data on the hydrogen sulfide (H,S) + propane
(C3Hs) binary system. Only vapor—Iliquid equilibrium (VLE)
data and saturating densities are found.**

The present work deals with pressure, density, and temper-
ature (PpT) data sets for the H,S (1) + C3Hg (2) system. Two
compositions have been studied, zz = 0.2227 and 0.2691, at
three temperatures for both mixtures. The Lee—Kesler® equation
of state and Plicker et al.” (LKP EoS) mixing rules are well-
known for calculating volumetric properties and are already
implemented in several process simulators such as PROSIM
Plus.2 Thus, we chose this model to check the coherence of
our data and to provide modeling parameters.

Experimental Section

Materials. Propane was purchased from Messer (France) with
a volume fraction certified purity higher than 99.95. Hydrogen
sulfide was purchased from Alpha Gaz with a volume fraction
certified purity higher than 99.5. Mixtures were prepared
carefully® with a mass uncertainty estimated to + 1073 g.

Apparatus and Experimental Procedure. The apparatus is
based on an Anton Paar DMA 512P cell. The vibrating-tube
apparatus used for this work and the complete procedure has
previously been described.* Briefly, the mixture is introduced
into a loading and pressurizing cell and is maintained above its
bubble pressure at ambient temperature. Vacuum is achieved
with a vacuum pump working for several hours to obtain a
reference vibrating period at very low pressures (< 5-107* MPa).
Small amounts of fluid are then continuously introduced into
the vibrating tube. The pressure increases continuously up to
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the dew point at a controlled rate of a maximum of 0.005
MPa-s™%. During this process the fluid is assumed to be in
equilibrium, and the pressure, period, and temperature (PzT)
are recorded every 0.3 s. After the dew point is reached, the
fluid is fully condensed in the whole circuit by increasing
pressure up to the maximum pressure studied (about 40 MPa
in this work). The circuit content is homogeneized through
partial purging to the event. The liquid phase is then measured
from upper pressure down to the bubble point. The pressure
decreases continuously by means of the regulating output valve.

The period of vibration of the vibrating tube is measured with
an uncertainty estimated to & 1-1078 s. The temperature of the
vibrating tube is controlled by a regulated bath with a temper-
ature stability of £ 0.01 K. The temperature is measured by
two Pt100 probes, periodically calibrated against a 25 Q
reference thermometer (TINSLEY Precision Instrument) certi-
fied by the Laboratoire National d’Essais (Paris) following the
1990 International Temperature Scale protocol. The resulting
uncertainty in the temperature is less than + 0.01 K. The
pressure is measured using three sensors with different operating
ranges: (0 to 0.2) MPa, (0 to 5) MPa, and (0 to 40) MPa. These
sensors are calibrated against a dead weight pressure balance
(5202S model from Desgranges & Huot) for the range (0.3 to
40) MPa and against an electronic balance (Fundamental Digital
Pressure Standard, model 24610 from Desgranges & Huot) for
pressures below 0.3 MPa. Global uncertainties on pressures after
calibration are (+ 0.00015, 4+ 0.001, and + 0.002) MPa,
respectively, to sensor ranges. Real time data are recorded
simultaneously by a computer.

Periods are converted into densities using the forced path
mechanical calibration model (FPMC).** This semiempirical
method is based on the study of the mechanical behavior of the
vibrating-tube function of temperature and pressure. It contains
two unknown parameters, which are estimated through only one
reference fluid, while classical calibration procedures require
the measurement of two references fluids for each temperature
studied. In the present work periods of R134a were measured
at several pressures and temperatures, and the dedicated equation
of state of Tillner-Roth and Baehr'? was used to estimate the
two parameters of the FPMC model.
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Table2. P, p, T Data for the Hydrogen Sulfide (1) + Propane (2)
Binary System; z = 0.2691

Table1. P, p, T Data for the Hydrogen Sulfide (1) + Propane (2)
Binary System; z = 0.2227
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This footnote indicates the separation of liquid data from vapor data. 16.847 5400 4619 1208 19596 4771
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Tables 1 and 2 and Figures 1 and 2 present experimental 24556 555.7 4932 1801 25434 496.2

isothermal (PpT) data sets for both compositions of the H,S 26.292 558.8 4954 1909 26.773  500.0

(1) + CsHs (2) binary system. Three isotherms in the (263 to 28082 5618 4982 2037 28.220 503.8

333) K range are studied for molar composition z = 0.2227. ;gggg gggi gggi gigg g?gg; gﬁg

For molar composition z = 0.2691, three isotherms are studied 34062 5712 5043 2411 32889 5150

in the (268 to 363) K range. We note that at 363.24 K no 36.163 5743 5101 2540 34710 519.0
“vapor—liquid” transition is observed over the (0 to 35) MPa 38383 5774 5146  266.2
pressure range. Moreover, the flat behavior of Pp data observed g;gg ;;;3
in the range (200 to 300) kg-m~2 indicates that the measure- 5967 2996
ments were done close to the mixture critical point. This is 5324  307.2

confirmed by the data provided by Kay and Rambosek.* They
present critical points along the whole composition range of
the H,S + CsHg binary system as shown in Figure 3. Their
data are smoothed to estimate the critical point coordinates for
mixture molar composition z = 0.2691. We find T, = 362.3
K, P, = 5.16 MPa, and p. = 243.9 kg-m~3, which is in good
agreement with this work. Kay and Rambosek provide also
saturating densities. Data are graphically compared to ours in
Figure 4 for the mixture with molar compositions z; = 0.1633
and 0.2986. In present work we could not estimate the phase
boundaries precisely because of the instability on the vibrating
period. However, our data close to the phase boundaries are all
included in the area located between the boundaries of Kay and
Rambosek for z; = 0.1633 and 0.2986.

Density Data Correlation

In this work, we estimate the coherence between a model
and the experimental data through the following average and
standard deviations:

2This footnote indicates the separation of liquid data from vapor data.
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Figure 1. Experimental (PpT) data for the hydrogen sulfide (1) + propane
(2) binary system: x, z = 0.2227 [(263, 293, and 333) K]; <, z = 0.2691

[(268, 313, and 363) K].
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Figure 2. Experimental (PpT) data near VLE boundaries for the hydrogen
sulfide (1) + propane (2) binary system: x, z = 0.2227 [(263, 293, and
333) K]; ©, zz = 0.2691 [(268, 313, and 363) K]; @ (red), Kay and
Rambosek phase boundaries at z = 0.1633; a (red), Kay and Rambosek
phase boundaries at zz = 0.2986.
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Figure 3. Critical point for the hydrogen sulfide (1) + propane (2) binary
system: experimental data from Kay and Rambosek (1953). x, critical
density; <, critical temperature; @, critical pressure; —, polynomial fitting;
*, estimated critical data for zz = 0.2691 (243.9 kg-m~3; 5.16 MPa and
362.3 K).

average deviation: Ap =

240
N

where Ap = (pgy — pexp)

Zl=

sample standard deviation: o,, =

In previous studies dealing with H,S, CO,, and light
hydrocarbons,* 2 several equations were used to represent
experimental PpT and VLE data. Benedict—Webb—Rubin—
Starling’s equation of state (BWRS Eo0S) was successfully
applied to the H,S/ethane! binary system with low deviations
(£ 2.5 kg-m™3).

The 11 parameters of the BWRS EoS were fitted for each
pure compound, and a binary interaction parameter was defined
for mixture density data. However, the EoS was not suitable to
estimate VLE boundaries (pressure, temperature). Cubic equa-
tions of state (cubic EoS), such as Peng—Robinson®® or the
Soave modification of Redlich—Kwong,** are well-known in
VLE representation. In 1982 Péneloux and Rauzy™® extend their
ability to estimate liquid density with help of a volume
translation method. More recently Laugier et al.®> proposed a
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Figure 4. Experimental (PpT) data for the hydrogen sulfide (1) + propane
(2) binary system: x, z = 0.2227 [(263.11, 293.28, and 333.22) K]; <, z;
= 0.2691 [(268.09, 313.21, and 363.24) K]; —, LKP.
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new method of volume translation based on neural network
calculations. Authors successfully applied this method on CO,
+ C,Hg and H,S + C,Hg binary systems with Ap <3kg:m=3,
It has the great advantage not to require any binary interaction
parameter. Weights of neural networks are only defined through
pure component density data. Thus, such a method seems very
promising for estimating volumetric properties of mixture data
if it is coupled to a predictive equation of state like the predictive
Peng—Robinson*® for VLE phase boundaries.

In the present work we focus on the ability of the LKP EoS.
The LKP model is based on the linearity of the compressibility
factor Z thanks to two reference fluids, methane® and n-
octane®, and the acentric factor: Z = ZO + »zZ®. The
compressibility factor of reference fluids is calculated via the
modified Benedict—Webb—Rubin'” equation of state.

B C D c’ y y
z=1+5+—+—+ B+ =) exp[——
Vi Vr2 Vr5 TrSVrS ( Vrz) ( Vr2 )

with
1 T, Tr2 Trs' 1 T, r3’

d,
D=d =
1 Tr

Vv T

V= and T, ==

r V(; r Tc

When dealing with mixtures, we used the following mixing rules
involving the k; binary parameters from Plocker et al.:

VcM = 2 Zzizjvcij
| ]
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Calculations are performed using Simulis Thermodynamics®
coupled with Microsoft Excel. Parameters used for pure
compound and reference fluids are gathered in Table 3. The
temperature-dependent form K;; = Kj, + KjjrT was chosen.
Parameters Kijjo and Kjjr are defined by fitting only VLE data
from Brewer et al.> work at four pressures [(0.69, 1.38, 2.07,
and 2.76) MPa] corresponding to the (258 to 344) K temperature
range. An adjustment has been achieved using the Newton
algorithm implemented into Microsoft Excel and the following
objective function:

N
100
F= N Z (Texp - Tcal)2
i

Parameters obtained are Kj; = 0.8623 + 1.8805-10~4(T/K). They
lead to results with the following deviation in temperature: +
0.85 K. Parameters are then applied to VLE data from Kay and
Rambosek. Observed deviations in temperature, 4+ 0.31 K, are
of the same order than previously, which confirmed the reliability
of the parameters. Thus, the LKP EoS is then applied on PpT

Table 3. Properties of Pure Compounds®

M P T Ve
compound kg-mol™* MPa K m3-kmol* )
propane 0.0440956 4.248 369.83 0.2 0.152291
hydrogen sulfide 0.0340819 8.963 373.53 0.0985 0.0941677
methane 0.0160428 4.599 190.56 0.0986 0.0115478
n-octane 0.114231  2.490 568.70 0.486 0.399552

BWR Eo0S parameter

methane (w = 0)

n-octane (wr = 0.3978)

by 0.1181193 0.2026579
b, 0.265728 0.331511
bs 0.154790 0.027655
b 0.030323 0.203488
o 0.0236744 0.0313385
C 0.0186984 0.0503618
C 0 0.016901
C 0.041724 0.041577
d;-10* 0.155488 0.48736
d,+10° 0.623689 0.0740336
B 0.65392 1.226

y 0.060167 0.03754
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Figure 5. Absolute deviations for data of the pure compounds: hydrogen
sulfide and propane: A, Reamer et al. and Ihmels et al. pure H,S data [(250
to 550) K]; W, Younglove et al. and Glos et al. pure CsHg data [(250 to
370) K].
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Figure 6. Relative deviations for data of the pure compounds: hydrogen
sulfide and propane: a, Reamer et al. and Ihmels et al. pure H,S data [(250
to 550) K]; W, Younglove et al. and Glos et al. pure CsHg data [(250 to
370) K].

for pure compounds and mixtures: Reamer et al.*® data for H,S
between (278 and 444) K, Ihmels and Gmehling'® data for
H,S between (250 and 550) K, Younglove and Ely?° data for
C;Hsg between (250 and 370) K, Glos et al. data for CsHg?*
between (260 and 340) K, and present work data for mixtures
between (263 and 363) K.

We have to consider the two indicators Ap and oa, together
to estimate the ability of the model. Thus, deviations between
calculated and experimental data are presented in the form Ap
+ 0, detailed deviations are plotted on Figures 5 and 6.
Deviations for pure H,S and C3Hg are respectively (—0.5 +
1.7) % and (—0.5 £ 0.7) %. For mixtures, deviations are (—0.2
+ 3.1) kg-m~3, less than 2 % for both liquid and vapor phases,
excluding the data close to the critical region (cf. Figures 5 to
8). For the isotherm at 363.24 K, deviations up to 70 kg-m™2
are observed; a maximum deviation is obtained for the density
of 241.13 kg-m~3, which is very close to the critical density
(243.9 kg-m~2 as estimated from Kay and Rambosek data). The
LKP model represents well the experimental data of this work
without any systematic deviation far from the critical region,
and discrepancies are similar for pure compounds and mixtures.

Conclusion

Pressure, density, and temperature (PpT) data are presented
for the hydrogen sulfide (1) + propane (2) binary system at
two compositions (zz = 0.2227 and 0.2691) and various
temperatures from vacuum up to 40 MPa. Experimental work
was achieved using a vibrating-tube densimeter.
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Figure 7. Absolute deviations for data of the hydrogen sulfide (1) + propane

(2) binary system: <, z = 0.2227 [(263.11, 293.28, and 333.22) K] and z

= 0.2691 [(268.09, 313.21, and 363.24) K].
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Figure 8. Relative deviations for data of the hydrogen sulfide (1) + propane

(2) binary system: <, z = 0.2227 [(263.11, 293.28, and 333.22) K] and z
= 0.2691 [(268.09, 313.21, and 363.24) K].

The LKP model was chosen to check consistency of
experimental data. Density deviations are less than 2 % on liquid
and vapor phases except for data close to critical point. Fluids
present in general a specific behavior near a critical point, and
if needed, we recommend the use of a more accurate model to
resolve the discrepancies observed.?
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